SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY

SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

- Course Title: MATHEMATICS
- Code No.: MTH 251-4
- Program: ELECTRICAL AND ELECTRONIC TECHNICIANS
- Semester: THREE
- Date: MAY 30, 1983
- Author: K.G. CLARKE

New:

Revision:

APPROVED:

Chainfer son ٩

Date

CALENDAR DESCRIPTION

ELECTRICAL & ELECRONIC TECHNICIANS

 MATHEMATICS
 MTH 251-4

 Course Name
 Course Number

PHILOSOPHY/GOALS:

When the student has successfully completed this course he will have demonstrated an acceptable ability to pass tests based upon the course contents as listed elsewhere. If, after completing the course, the student takes further courses (or employment) in which he is required to apply this material he should then, through practrice, be able to develop a good command of this subject matter.

METHOD OF ASSESSMENT (GRADING METHOD):

The students will be assessed by test. These tests will include periodic tests based upon blocks of subject matter and may, at the instructor's discretion include unannounced surprise tests on current work and/or a final test on the whole course. A letter grade will be based upon a student's weighted average of his test results. See also the mathematics department's annual publication "To the Mathematics Student" which is presented to the students early in each academic year.

TEXTBOOK(S):

"Calculus with Analytic Geometry"

- Person

Objectives:

The basic objective is for the student to develop an understanding of the methods studied, knowlege of the facts presented and an ability to use these in the solution of problems. For this purpose exercises are assigned. Tests will reflect the sort of work contained in the assignments. The level of competency demanded is the eevel required to obtain an overall passing average on the tests. The material to be covered is listed on the following page(s).

- 3 -

Topic Number	Periods	Topic Description	Reference
		<u>Number Systems</u> Binary, octal, hexadecimal Change of base, algebra of elements Addition & multiplication tables	Kershaw Ch. 2, 3
		Boolean Algebra Definition of elements and 2 operators Truth tables, derivation of simple identities: Nega- tion - the not operator	Maivino & Leach
		<pre>Applications to logic and switching circuits <u>Algebra Review</u> Special products, factoring, exponents, radicals, and</pre>	Ch. 4 Review Sheets
		equations <u>Straight Line, Equations & Graphs</u> Review-distance between points, slope of the line, inclina- tion, equation of a line	Person Ch. 1,2,3
		<u>Analytic Geometry-Conic Sections</u> Equations & Graphs of conies (brief coverage)	Person Ch. 4, 5,6,8
		<u>Introduction to Differential</u> <u>Calculus</u> functional notation, limiting value differentiation differentiation by delta method applications	Person Ch. 9, 10,11,12
		Differentiation of Power Functions by Formula Chain Rule	Text Ch. 13,14